Hydrophobic affinity partition of spinach chloroplasts in aqueous two-phase systems
- PMID: 952914
- DOI: 10.1016/0005-2736(76)90451-x
Hydrophobic affinity partition of spinach chloroplasts in aqueous two-phase systems
Abstract
The surface properties of spinach chloroplasts, both of intact chloroplasts with surrounding envelope and broken chloroplasts consisting of the inner lamellar system, have been studied by partitioning them between two aqueous phases, especially using counter-current distribution technique. The two-phase system consists of poly(ethyleneglycol), dextran and water. The two polymers are enriched in opposite phases and by binding deoxycholate or palmitate to one of the polymers the affinity of chloroplasts for the corresponding phase is strongly enhanced. The partition of the two classes of chloroplasts, however, is not affected to the same degree and the affinity of the chloroplast envelope for deoxycholate and palmitate is stronger than that of the lamellar system. This has been correlated to the chemical composition of the two types of membranes. By studying the effect of salts on the partition it has been found that the lamellar system bears a larger number of negative charges as compared to the envelope of the intact chloroplast.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
