Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 23;82(5):576-86.
doi: 10.1161/01.res.82.5.576.

Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia

Affiliations
Free article

Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia

R Kacimi et al. Circ Res. .
Free article

Abstract

Adhesion molecules mediate inflammatory myocardial injury after ischemia/reperfusion. Cytokine release and hypoxia are features of acute ischemia that may influence expression of these molecules. Accordingly, we studied intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) responses to cytokines and acute hypoxia in cultured myocardial cells. Northern blot analysis and immunoassay showed that the proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha stimulated concentration-dependent increases in ICAM and VCAM mRNA and protein. In both cardiac myocytes and fibroblasts, pretreatment with a specific inhibitor of nuclear transcription factor-kappaB (NF-kappaB) prevented cytokine induction of both molecules. We also found that inhibition of tyrosine kinase and p38/RK (stress-activated protein kinase) pathways prevented IL-1beta-induced ICAM and VCAM protein synthesis, whereas extracellular signal-regulated protein kinase (ERK1/ERK2) inhibition did not. Neither hypoxia (0% O2 for 6 hours) alone nor hypoxia/reoxygenation had any significant effect on ICAM and VCAM mRNA. However, hypoxia did enhance IL-1beta-induced ICAM mRNA expression in myocytes. As a possible mechanism of this synergistic action on CAM expression, hypoxia induced a time-dependent increase in the DNA binding activity of both NF-kappaB and activator protein-1 (AP-1), two transcription factors important for cell adhesion molecule expression. In contrast to the enhanced ICAM mRNA induced by IL-1beta during hypoxia, however, protein levels for this adhesion molecule were unchanged beyond IL-1beta-stimulated levels, suggesting posttranscriptional and/or posttranslational control mechanisms. We conclude that cytokines regulate ICAM and VCAM mRNA and protein in both cardiac myocytes and fibroblasts. Furthermore, adhesion molecule induction requires translocation of at least two transcription factors, NF-kappaB and AP-1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources