Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998;27(2):177-81.
doi: 10.1007/s002490050124.

Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation

Affiliations

Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation

G Barshtein et al. Eur Biophys J. 1998.

Abstract

The velocity of rouleaux formation (RF), as previously shown, increases with increasing dextran concentration up to a critical concentration (Ca), beyond which the addition of dextran reduces the RF velocity (RFV). de Gennes' model for polymer solutions suggests that dextrans exist in two conformations: a coil structure at low concentrations, which changes to a network beyond a critical concentration (C*). In the present study we examined the relation between Ca and C* for dextrans of different molecular weight, and found that they coincide. This suggests that the change in dextran behavior, from increasing to decreasing RFV, occurs when their conformation changes from coil to network. In addition, it has been reported that in dilute dextran solutions the intercellular distance (D) between RBC in rouleaux increases with the molecular weight of the dextran. We found that D correlates with Rf, the end-to-end distance of the polymer molecule, and for all dextrans D < or = 1.5 Rf. In accord with de Gennes' Model for polymers between surfaces, this corresponds to intercellular interaction with two overlapping surface-associated polymer layers, which may extend "tails" to interact with the opposing cells.

PubMed Disclaimer

Publication types

LinkOut - more resources