Analysis of various sequence-specific triplexes by electron and atomic force microscopies
- PMID: 9533714
 - PMCID: PMC1302582
 - DOI: 10.1016/S0006-3495(98)74026-3
 
Analysis of various sequence-specific triplexes by electron and atomic force microscopies
Abstract
Sequence-specific interactions of 20-mer G,A-containing triple helix-forming oligonucleotides (TFOs) and bis-PNAs (peptide nucleic acids) with double-stranded DNA was visualized by electron (EM) and atomic force (AFM) microscopies. Triplexes formed by biotinylated TFOs are easily detected by both EM and AFM in which streptavidin is a marker. AFM images of the unlabeled triplex within a long plasmid DNA show a approximately 0.4-nm height increment of the double helix within the target site position. TFOs conjugated to a 74-nt-long oligonucleotide forming a 33-bp-long hairpin form extremely stable triplexes with the target site that are readily imaged by both EM and AFM as protruding DNA. The short duplex protrudes in a perpendicular direction relative to the double helix axis, either in the plane of the support or out of it. In the latter case, the apparent height of the protrusion is approximately 1.5 nm, when that of the triplex site is increased by 0.3-0.4 nm. Triplex formation by bis-PNA, in which two decamers of PNA are connected via a flexible linker, causes deformations of the double helix at the target site, which is readily detected as kinks by both EM and AFM. Moreover, AFM shows that these kinks are often accompanied by an increase in the DNA apparent height of approximately 35%. This work shows the first direct visualization of sequence-specific interaction of TFOs and PNAs, with their target sequences within long plasmid DNAs, through the measurements of the apparent height of the DNA double helix by AFM.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
