Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Spring;4(1):65-70.
doi: 10.1089/mdr.1998.4.65.

Molecular evolution of rifampicin resistance in Streptococcus pneumoniae

Affiliations

Molecular evolution of rifampicin resistance in Streptococcus pneumoniae

M Enright et al. Microb Drug Resist. 1998 Spring.

Abstract

Rifampicin resistance has arisen in several different species of bacteria because of alterations to one or more regions in the target of the antibiotic, the beta-subunit of RNA polymerase encoded by rpoB. Nucleotide sequence analysis of a 270 bp fragment of rpoB from 16 clinical rifampicin-susceptible isolates of Streptococcus pneumoniae, 8 clinical rifampicin-resistant isolates, and 3 spontaneous rifampicin-resistant mutants, has revealed that, as with previously examined species, point mutations within the cluster I region of rpoB, at sites encoding Asp516 and HiS526, also confer resistance to rifampicin in this important human pathogen. Moreover, the residues within cluster I, that were altered within the rifampicin-resistant mutants of S. pneumoniae, were in the same position as those previously found to alter in resistant isolates of Escherichia coli and Mycobacterium tuberculosis. Sequence analysis of rpoB, both from these isolates of S. pneumoniae and from two strains of S. mitis, reveals that, among a number of clinical isolates, resistance to rifampicin in S. pneumoniae has arisen by point mutation. However, the nucleotide sequence of rpoB from one isolate examined suggests that interspecies gene transfer may also have played a role in the evolution of rifampicin-resistance in S. pneumoniae.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources