Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Sep;39(3):348-58.
doi: 10.1161/01.res.39.3.348.

Interaction of capillary and tissue forces in the cat small intestine

Free article

Interaction of capillary and tissue forces in the cat small intestine

N A Mortillaro et al. Circ Res. 1976 Sep.
Free article

Abstract

We measured steady state capillary hydrostatic pressure (P c,i), plasma and lymph protein concentrations, lymph and blood flow, and capillary filtration coefficients in an in situ loop of cat small intestine at venous outflow pressures (PV) of 0, 5, 10, 15, 20, 25, and 30 mm Hg. The data were used to calculate colloid osmotic pressure of lymph and plasma, interstitial fluid pressure (Pt), pre- and postcapillary resistances, and a tissue pressure-volume curve of the intestinal interstitium. When PV was elevated from 0 to 30 mm Hg, lymph protein concentration decreased from 3.8 to 1.9 g/100 ml (representing a change in colloid osmotic pressure of 6.2 mm Hg), lymph flow increased 7-fold (or an equivalent imbalance in Starling forces of 4.3 mm Hg), and the calculated PT increased from 1.8 to +5.3. Because lymph flow draining the loop decreased during the determination of Pc, i at venous pressures between 15 and 30 mm Hg, the corresponding calculated PT may be in error by 1-2 mm Hg. The tissue pressure-volume relationship calculated from the data indicates that the intestinal interstitial volume expands nonlinearly and this expansion is characterized by two distinctly different compliant components: (1) tissue compliance is low at PV between 0 and 15 mm Hg (0.4 ml/mm Hg), and (2) at PV greater than 15 mm Hg the tissue compliance is relatively high (4 ml/mm Hg). We found that when PV was elevated from 0 to 15 mm Hg, increases in PT are the major tissue adjustments that oppose the increased filtration pressures. Furthermore, at Pv of 20-30 mm Hg, tissue protein concentration decreases, lymph flow relative to the filtration coefficient (deltaP DROP) increases and, to a much lesser extent, PT increases. Finally, the combination of these changes in tissue force at high filtration pressures represent a maximum tissue edema "safety factor" of 10 mm Hg; further increases in filtration pressures result in large volume movements into the intestinal lumen.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources