Interaction of capillary and tissue forces in the cat small intestine
- PMID: 954164
- DOI: 10.1161/01.res.39.3.348
Interaction of capillary and tissue forces in the cat small intestine
Abstract
We measured steady state capillary hydrostatic pressure (P c,i), plasma and lymph protein concentrations, lymph and blood flow, and capillary filtration coefficients in an in situ loop of cat small intestine at venous outflow pressures (PV) of 0, 5, 10, 15, 20, 25, and 30 mm Hg. The data were used to calculate colloid osmotic pressure of lymph and plasma, interstitial fluid pressure (Pt), pre- and postcapillary resistances, and a tissue pressure-volume curve of the intestinal interstitium. When PV was elevated from 0 to 30 mm Hg, lymph protein concentration decreased from 3.8 to 1.9 g/100 ml (representing a change in colloid osmotic pressure of 6.2 mm Hg), lymph flow increased 7-fold (or an equivalent imbalance in Starling forces of 4.3 mm Hg), and the calculated PT increased from 1.8 to +5.3. Because lymph flow draining the loop decreased during the determination of Pc, i at venous pressures between 15 and 30 mm Hg, the corresponding calculated PT may be in error by 1-2 mm Hg. The tissue pressure-volume relationship calculated from the data indicates that the intestinal interstitial volume expands nonlinearly and this expansion is characterized by two distinctly different compliant components: (1) tissue compliance is low at PV between 0 and 15 mm Hg (0.4 ml/mm Hg), and (2) at PV greater than 15 mm Hg the tissue compliance is relatively high (4 ml/mm Hg). We found that when PV was elevated from 0 to 15 mm Hg, increases in PT are the major tissue adjustments that oppose the increased filtration pressures. Furthermore, at Pv of 20-30 mm Hg, tissue protein concentration decreases, lymph flow relative to the filtration coefficient (deltaP DROP) increases and, to a much lesser extent, PT increases. Finally, the combination of these changes in tissue force at high filtration pressures represent a maximum tissue edema "safety factor" of 10 mm Hg; further increases in filtration pressures result in large volume movements into the intestinal lumen.
Similar articles
-
The pulmonary interstitium in capillary exchange.Ann N Y Acad Sci. 1982;384:146-65. doi: 10.1111/j.1749-6632.1982.tb21369.x. Ann N Y Acad Sci. 1982. PMID: 6953817
-
Interaction of capillary, interstitial, and lymphatic forces in the canine hindpaw.Circ Res. 1976 Aug;39(2):245-54. doi: 10.1161/01.res.39.2.245. Circ Res. 1976. PMID: 939010
-
Capillary and interstitial forces during fluid absorption in the cat small intestine.Gastroenterology. 1984 Feb;86(2):267-73. Gastroenterology. 1984. PMID: 6690353
-
Distribution of body fluids: local mechanisms guarding interstitial fluid volume.J Physiol (Paris). 1984;79(6):395-400. J Physiol (Paris). 1984. PMID: 6399307 Review.
-
Plasma volume regulation: defences against edema formation (with special emphasis on hypoproteinemia).Am J Nephrol. 1993;13(5):399-412. doi: 10.1159/000168654. Am J Nephrol. 1993. PMID: 8116692 Review.
Cited by
-
Volumetric assessment of the capillary filtration coefficient in the cat small intestine.Pflugers Arch. 1979 Jul;381(1):25-33. doi: 10.1007/BF00582328. Pflugers Arch. 1979. PMID: 573451
-
The effects of isoprenaline and bradykinin on capillary filtration in the cat small intestine.Br J Pharmacol. 1979 Nov;67(3):361-6. doi: 10.1111/j.1476-5381.1979.tb08688.x. Br J Pharmacol. 1979. PMID: 497537 Free PMC article.
-
Protean manifestations of pylethrombosis. A review of thirty-four patients.Ann Surg. 1985 Aug;202(2):191-202. doi: 10.1097/00000658-198508000-00009. Ann Surg. 1985. PMID: 3874612 Free PMC article.
-
Transport of molecules across tumor vasculature.Cancer Metastasis Rev. 1987;6(4):559-93. doi: 10.1007/BF00047468. Cancer Metastasis Rev. 1987. PMID: 3327633 Review.
-
A Modern View of the Interstitial Space in Health and Disease.Front Vet Sci. 2020 Nov 5;7:609583. doi: 10.3389/fvets.2020.609583. eCollection 2020. Front Vet Sci. 2020. PMID: 33251275 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous