Supercomputer description of human lung morphology for imaging analysis
- PMID: 9544692
Supercomputer description of human lung morphology for imaging analysis
Abstract
A supercomputer code that describes the three-dimensional branching structure of the human lung has been developed. The algorithm was written for the Cray C94. In our simulations, the human lung was divided into a matrix containing discrete volumes (voxels) so as to be compatible with analyses of SPECT images. The matrix has 3840 voxels. The matrix can be segmented into transverse, sagittal and coronal layers analogous to human subject examinations. The compositions of individual voxels were identified by the type and respective number of airways present. The code provides a mapping of the spatial positions of the almost 17 million airways in human lungs and unambiguously assigns each airway to a voxel. Thus, the clinician and research scientist in the medical arena have a powerful new tool to be used in imaging analyses. The code was designed to be integrated into diverse applications, including the interpretation of SPECT images, the design of inhalation exposure experiments and the targeted delivery of inhaled pharmacologic drugs.
MeSH terms
LinkOut - more resources
Full Text Sources