Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jun 18;25(3):291-306.
doi: 10.1007/BF00234020.

Effects of frontal eye field stimulation upon activities of the lateral geniculate body of the cat

Effects of frontal eye field stimulation upon activities of the lateral geniculate body of the cat

T Tsumoto et al. Exp Brain Res. .

Abstract

Effects of electrical stimulation of the frontal eye field (FEF) upon activites of the lateral geniculate body (LG) were studied in encephale isole cats. In some experiments the effects were examined by recording field responses of the dorsal nucleus of LG (LGd) and the visual cortex (VC) to electrical stimulation of the optic chiasm (OX). Conditioning repetitive stimulation of FEF exerted no significant effects on the r1 wave of LGd responses but had a facilitatory effect on the r2 wave. FEF-induced facilitation of VC responses was prominent in the late postsynaptic components. These effects had latencies of 50-100 msec and durations of 200-500 msec. Transection of the midbrain showed that most of the FEF-effect was not mediated via the brainstem reticular formation. Extracellular unitary recordings were made from 125 neurons, of which 91 were LGd neurons, 23 neurons of the caudal part of the thalamic reticular nucleus (TRc) and 11 neurons of the ventral nucleus of LG (LGv). In 30 to 87 LGd relay neurons FEF stimuli increased response probabilities to OX stimuli and their spontaneous discharges. These FEF-facilitated LGd neurons were distinguished from the non-affected ones in that the former had longer OX-latencies than the latter. The FEF-facilitated neurons probably correspond to "X" neurons of LGd. In 17 TRc neurons the effects were inhibitory. Their time courses were similar to those of the facilitation in the LGd relay neurons. Seven LGv neurons recieved facilitaroy effects from FEF. Among them 5 neurons showed short-latency (6.7-17 msec) responses to FEF single shocks. The FEF sites inducing conjugate lateral eye movements exerted stronger facilitatory effects than those inducing upward or centering eye movements did. It is suggested that the effects may subserve to cancel the inhibitory convergence onto X-cells just after saccadic eye movements so as to improve visual information transmission through LGd during the eye fixation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1975 Sep;250(3):579-95 - PubMed
    1. Brain Res. 1972 Mar 10;38(1):211-6 - PubMed
    1. Brain Res. 1970 Aug 12;22(1):1-13 - PubMed
    1. Brain Res. 1972 Jun 8;41(1):214-20 - PubMed
    1. Science. 1963 Jan 25;139(3552):343-4 - PubMed

LinkOut - more resources