Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr;53(4):952-7.
doi: 10.1111/j.1523-1755.1998.00839.x.

Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules

Affiliations
Free article

Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules

J A Wesson et al. Kidney Int. 1998 Apr.
Free article

Abstract

Crystal polymorphism is exhibited by calcium oxalates in nephrolithiasis, and we have proposed that a shift in the preferred crystalline form of calcium oxalate (CaOx) from monohydrate (COM) to dihydrate (COD) induced by urinary macromolecules reduces crystal attachment to epithelial cell surfaces, thus potentially inhibiting a critical step in the genesis of kidney stones. We have tested the validity of this hypothesis by studying both the binding of monohydrate and dihydrate crystals to renal tubule cells and the effect of macromolecular urinary solutes on crystal structure. Renal tubule cells grown in culture bound 50% more CaOx monohydrate than dihydrate crystals of comparable size. The effects of macromolecules on the spontaneous nucleation of CaOx were examined in HEPES-buffered saline solutions containing Ca2+ and C2O4(2-) at physiologic concentrations and supersaturation. Many naturally occurring macromolecules known to be inhibitors of crystallization, specifically osteopontin, nephrocalcin and urinary prothrombin fragment 1, were found to favor the formation of calcium oxalate dihydrate in this in vitro system, while other polymers did not affect CaOx crystal structure. Thus, the natural defense against nephrolithiasis may include impeding crystal attachment by an effect of macromolecular inhibitors on the preferred CaOx crystal structure that forms in urine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances