Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Apr:65:S36-41.

H+ and HCO3- transporters in the medullary thick ascending limb of the kidney: molecular mechanisms, function and regulation

Affiliations
  • PMID: 9551430
Review

H+ and HCO3- transporters in the medullary thick ascending limb of the kidney: molecular mechanisms, function and regulation

M Paillard. Kidney Int Suppl. 1998 Apr.

Abstract

The H+ and HCO3- transporters present in the medullary thick ascending limb (MTAL) of the kidney are involved in several functions, such as transepithelial transport, defense of cell pH and cell volume. Apical H+ secretion occurs via the NHE-3 and NHE-2 isoforms of the Na+/H+ exchanger, and H(+)-ATPase. The apical Na+/H+ exchanger is responsible for most of the apical step of transepithelial HCO3- absorption and is unresponsive to cell acidification under isosmotic conditions. Basolateral HCO3- efflux mechanisms may occur via the Cl-/HCO3- exchanger and via the cotransporters K+/HCO3- (in the rat) and Na-3HCO3- (in the mouse). However, the role of each transporter in transepithelial HCO3- absorption is currently unknown. Inhibition of the basolateral Na+/H+ exchanger (NHE-1) paradoxically inhibits the apical Na+/H+ exchanger. This cross talk is independent of cell pH and may involve variations in cell volume. Arginine vasopressin (AVP) and hyperosmolality induce a differential regulation of basolateral NHE-1 and the apical Na+/H+ exchanger. They stimulate the basolateral NHE-1, and the resulting cell alkalinization probably stimulates the pHi-sensitive AE2, which restores cell volume by cellular uptake of NaCl. They also inhibit the apical Na+/H+ exchanger, which reduces net HCO3- absorption and thus may prevent interstitial fluid alkalinization. Chronic metabolic acidosis markedly increases HCO3- absorptive capacity of MTAL, by stimulating at least the synthesis of apical NHE-3 protein, as in the proximal tubule. Conversely, chronic metabolic alkalosis reduces the apical NHE-3 transport activity by decreasing the synthesis of NHE-3 protein. The paradoxical increase in HCO3- absorptive capacity of MTAL observed in the model of chronic NaHCO3-load alkalosis should be due to other factors overcoming the inhibitory effect of alkalosis on NHE-3.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources