Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr 24;273(17):10302-7.
doi: 10.1074/jbc.273.17.10302.

Reconstitution of a protein disulfide catalytic system

Affiliations
Free article

Reconstitution of a protein disulfide catalytic system

M Bader et al. J Biol Chem. .
Free article

Abstract

Disulfide bonds are important for the structure and stability of many proteins. In prokaryotes their formation is catalyzed by the Dsb proteins. The DsbA protein acts as a direct donor of disulfides to newly synthesized periplasmic proteins. Genetic evidence suggests that a second protein called DsbB acts to specifically reoxidize DsbA. Here we demonstrate the direct reoxidation of DsbA by DsbB. We have developed a fluorescence assay that allows us to directly follow the reoxidation of DsbA. We show that membranes containing catalytic amounts of DsbB can rapidly reoxidize DsbA to completion. The reaction strongly depends on the presence of oxygen, implying that oxygen serves as the final electron acceptor for this disulfide bond formation reaction. Membranes from a dsbB null mutant display no DsbA reoxidation activity. The ability of DsbB to reoxidize DsbA fits Michaelis-Menten behavior with DsbA acting as a high affinity substrate for DsbB with a Km = 10 microM. The in vitro reconstitution described here is the first biochemical analysis of DsbB and allows us to study the major pathway of disulfide bond formation in Escherichia coli.

PubMed Disclaimer

Publication types

LinkOut - more resources