Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar;9(3):292-8.
doi: 10.1111/j.1540-8167.1998.tb00914.x.

Differential role of epicardial and endocardial K(ATP) channels in potassium accumulation during regional ischemia induced by embolization of a coronary artery with latex

Affiliations

Differential role of epicardial and endocardial K(ATP) channels in potassium accumulation during regional ischemia induced by embolization of a coronary artery with latex

S Miyoshi et al. J Cardiovasc Electrophysiol. 1998 Mar.

Abstract

Introduction: K(ATP) channels are activated predominantly in the epicardium during regional ischemia. Therefore, the role of K(ATP) channels in ischemia-induced rise of extracellular potassium concentration ([K+]o) might be greater in the epicardium.

Methods and results: In 18 anesthetized dogs, the left anterior descending coronary artery (LAD) was ligated, followed by injection of 23-microm latex beads into the occluded artery to interrupt collateral flow, by which accumulated [K+]o might wash out. Epicardial and endocardial [K+]o were measured during a 20-minute period of ischemia using a valinomycin membrane. The dogs were divided into three groups: 6 control dogs (CTRL); 7 dogs pretreated with intravenous glibenclamide (0.3 mg/kg [GLIB]), a blocker of K(ATP) channels; and 5 dogs pretreated with intravenous nicorandil (0.2 to 0.25 mg/kg [NCR]), a K(ATP) channel opener. Before LAD occlusion, there was no difference in [K+]o among the three groups. In the control group, epicardial and endocardial [K+]o were increased to a similar level as a function of time after occlusion (CTRL) at both layers. Ischemia-induced epicardial [K+]o rise was suppressed by GLIB (8.4+/-0.4 vs 6.7+/-0.5 mM, P < 0.05) but augmented by NCR (12.9+/-2.0 mM, P < 0.05). In contrast, endocardial [K+]o rise remained unaffected (7.6+/-0.2 mM CTRL, 7.6+/-1.3 mM GLIB, and 9.4+/-2.2 mM NCR, P = NS).

Conclusion: Activation of K(ATP) channels plays an important role in epicardial [K+]o rise, but not in endocardial [K+]o rise, during regional ischemia. Another mechanism(s) may be important for endocardial [K+]o accumulation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources