Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 1;273(18):11134-43.
doi: 10.1074/jbc.273.18.11134.

Substrate binding and catalytic mechanism of a barley beta-D-Glucosidase/(1,4)-beta-D-glucan exohydrolase

Affiliations
Free article

Substrate binding and catalytic mechanism of a barley beta-D-Glucosidase/(1,4)-beta-D-glucan exohydrolase

M Hrmova et al. J Biol Chem. .
Free article

Abstract

A beta-glucosidase, designated isoenzyme betaII, from germinated barley (Hordeum vulgare L.) hydrolyzes aryl-beta-glucosides and shares a high level of amino acid sequence similarity with beta-glucosidases of diverse origin. It releases glucose from the non-reducing termini of cellodextrins with catalytic efficiency factors, kcat/Km, that increase approximately 9-fold as the degree of polymerization of these substrates increases from 2 to 6. Thus, the enzyme has a specificity and action pattern characteristic of both beta-glucosidases (EC 3.2.1.21) and the polysaccharide exohydrolase, (1,4)-beta-glucan glucohydrolase (EC 3.2.1.74). At high concentrations (100 mM) of 4-nitrophenyl beta-glucoside, beta-glucosidase isoenzyme betaII catalyzes glycosyl transfer reactions, which generate 4-nitrophenyl-beta-laminaribioside, -cellobioside, and -gentiobioside. Subsite mapping with cellooligosaccharides indicates that the barley beta-glucosidase isoenzyme betaII has six substrate-binding subsites, each of which binds an individual beta-glucosyl residue. Amino acid residues Glu181 and Glu391 are identified as the probable catalytic acid and catalytic nucleophile, respectively. The enzyme is a family 1 glycoside hydrolase that is likely to adopt a (beta/alpha)8 barrel fold and in which the catalytic amino acid residues appear to be located at the bottom of a funnel-shaped pocket in the enzyme.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources