Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 1;24(4):624-31.
doi: 10.1016/s0891-5849(97)00367-5.

Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c

Affiliations

Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c

J C Yang et al. Free Radic Biol Med. .

Abstract

It was recently reported that the mitochondrial protein cytochrome c is required for the induction of apoptosis, and that the overexpression of Bcl-2 caused increased retention of this apoptogenic factor by mitochondria. Several cellular toxins, including H2O2, tBOOH and Ca++, induce the Mitochondrial Permeability Transition (MPT); we tested the possibility that MPT is an intracellular sensor of toxicity that results in the release of cytochrome c. We observe that the release of cytochrome c from purified mitochondria is stimulated by the classical inducers of MPT, and is inhibited by the classical inhibitor of MPT, cyclosporin A (CsA). After induction of MPT, mitochondrial supernatants gained the activity to induce cleavage of caspase 3 (CPP32) in cytosolic extracts, and this gain of activity was inhibited by CsA pretreatment of mitochondria, and was cancelled by immunodepletion of cytochrome c from the supernatants. After induction of MPT, mitochondrial supernatants mixed with or without cytosolic extract gained the activity to ladder nuclei, and this gain of activity was inhibited by CsA pretreatment of mitochondria, and cancelled by immunodepletion of cytochrome c from the supernatants. These results demonstrate that the induction of MPT causes release of cytochrome c from mitochondria, which is required for the hallmarks of cytosolic and nuclear apoptosis, caspase 3 activation and nuclear laddering, and identify the MPT as a potential intracellular sensor of oxidants and other toxins, and as a target for the pharmacological inhibition of apoptosis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources