Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar;47(3):115-21.
doi: 10.1007/s000110050296.

Effect of ebselen on IL-1-induced alterations in cartilage metabolism

Affiliations

Effect of ebselen on IL-1-induced alterations in cartilage metabolism

M A Pratta et al. Inflamm Res. 1998 Mar.

Abstract

Objective: To evaluate the effect of the antioxidant-like anti-inflammatory agent, ebselen, on cartilage proteoglycan degradation and to determine whether its cartilage protectant activity is related to its antioxidant activity.

Materials and methods: Cartilage in organ culture was stimulated with interleukin-1 (IL-1), and proteoglycan degradation was assessed by measuring the amount of sulfated glycosaminoglycan released into the media, proteoglycan synthesis evaluated by [35S]-sulfate incorporation, and prostaglandin E2 (PGE2) release determined by radioimmunoassay (RIA). Glutathione peroxidase (GSH-Px) activity was evaluated in a coupled test system using NADPH/GSSG reductase as an indicator and cyclooxygenase activity was evaluated using sheep seminal vesicle prostaglandin synthase.

Results: Ebselen caused a concentration-dependent inhibition of IL-1-stimulated proteoglycan degradation with an IC50 of 4.7 microM. Cartilage PGE2 release was also reduced in the presence of ebselen (IC50 = 6.2 microM). However, at concentrations up to 100 microM, ebselen had no effect on the inhibition of proteoglycan synthesis by IL-1. Induction of proteoglycan breakdown was also inhibited by a sulfur analog of ebselen. This analog was devoid of GSH-Px activity and was 50-fold less potent in cyclooxygenase inhibitory activity, but was equipotent to ebselen in inhibiting cartilage degradation.

Conclusions: Ebselen, unlike other NSAIDs, blocks cartilage proteoglycan breakdown without inhibiting proteoglycan synthesis. This effect is independent of its GSH-Px activity and its ability to inhibit cyclooxygenase and PGE2 production. Therefore, this compound may provide a new mechanism for protecting cartilage matrix from degradative factors in arthritic joints.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources