Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Feb;27(1):91-5.
doi: 10.1093/ije/27.1.91.

Prevalence proportion ratios: estimation and hypothesis testing

Affiliations
Comparative Study

Prevalence proportion ratios: estimation and hypothesis testing

T Skov et al. Int J Epidemiol. 1998 Feb.

Abstract

Background: Recent communications have argued that often it may not be appropriate to analyse cross-sectional studies of prevalent outcomes with logistic regression models. The purpose of this communication is to compare three methods that have been proposed for application to cross sectional studies: (1) a multiplicative generalized linear model, which we will call the log-binomial model, (2) a method based on logistic regression and robust estimation of standard errors, which we will call the GEE-logistic model, and (3) a Cox regression model.

Methods: Five sets of simulations representing fourteen separate simulation conditions were used to test the performance of the methods.

Results: All three models produced point estimates close to the true parameter, i.e. the estimators of the parameter associated with exposure had negligible bias. The Cox regression produced standard errors that were too large, especially when the prevalence of the disease was high, whereas the log-binomial model and the GEE-logistic model had the correct type I error probabilities. It was shown by example that the GEE-logistic model could produce prevalences greater than one, whereas it was proven that this could not happen with the log-binomial model. The log-binomial model should be preferred.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources