Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 8;273(19):11758-69.
doi: 10.1074/jbc.273.19.11758.

Biochemical evidence that small proline-rich proteins and trichohyalin function in epithelia by modulation of the biomechanical properties of their cornified cell envelopes

Affiliations
Free article

Biochemical evidence that small proline-rich proteins and trichohyalin function in epithelia by modulation of the biomechanical properties of their cornified cell envelopes

P M Steinert et al. J Biol Chem. .
Free article

Abstract

The cornified cell envelope (CE) is a specialized structure involved in barrier function in stratified squamous epithelia, and is assembled by transglutaminase cross-linking of several proteins. Murine forestomach epithelium undergoes particularly rigorous mechanical trauma, and these CEs contain the highest known content of small proline-rich proteins (SPRs). Sequencing analyses of these CEs revealed that SPRs function as cross-bridgers by joining other proteins by use of multiple adjacent glutamines and lysines on only the amino and carboxyl termini and in functionally non-polar ways. Forestomach CEs also use trichohyalin as a novel cross-bridging protein. We performed mathematical modeling of amino acid compositions of the CEs of mouse and human epidermis of different body sites. Although the sum of loricrin + SPRs was conserved, the amount of SPRs varied in relation to the presumed physical requirements of the tissues. Our data suggest that SPRs could serve as modifiers of a composite CE material composed of mostly loricrin; we propose that increasing amounts of cross-bridging SPRs modify the structure of the CE, just as cross-linking proteins strengthen other types of tissues. In this way, different epithelia may use varying amounts of the cross-bridging SPRs to alter the biomechanical properties of the tissue in accordance with specific physical requirements and functions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources