Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 May-Jun;49(5-6):739-41.
doi: 10.1016/s0969-8043(97)00099-7.

Fat-free mass by bioelectrical impedance vs dual-energy X-ray absorptiometry (DXA)

Affiliations
Comparative Study

Fat-free mass by bioelectrical impedance vs dual-energy X-ray absorptiometry (DXA)

A de Lorenzo et al. Appl Radiat Isot. 1998 May-Jun.

Abstract

Body composition (BC) assessment is a useful tool for a careful evaluation of nutrition status. Bioelectrical impedance analysis (BIA) is a safe, low-cost and reliable method for BC assessment. For epidemiological and clinical research in children, paediatric-age specific formula for fat-free mass (FFM) prediction from BIA is needed. Thus, in 35 children (age 7.7-13.0 years) with different levels of body fatness (relative weight for age 70.6-133.8%), FFM was calculated from dual-energy X-ray absorptiometry (DXA). A regression equation from BIA and DXA data was elaborated. The impedance index (ZI = height2/bioelectrical impedance) was the strongest predictor of FFM, explaining 89% of its variance. However, the variance increased to 96% when body weight was added with ZI in the regression model. No variable, including sex and age, contributed to the prediction of FFM in the presence of ZI and body weight. The regression formula [FFM = 2.330 + 0.588 ZI (cm2/omega) + 0.211 Weight (kg) (r = 0.96, SEE = 1.0 kg)], allows a reliable prediction of FFM in children from body impedance values.

PubMed Disclaimer

Publication types