Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 1;278(2):349-67.
doi: 10.1006/jmbi.1998.1715.

Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay

Affiliations

Quick-freeze deep-etch electron microscopy of the actin-heavy meromyosin complex during the in vitro motility assay

E Katayama. J Mol Biol. .

Abstract

Since mica is a substitute for glass in the in vitro actin motility assay, I examined the structure of heavy meromyosin (HMM) crossbridges supporting actin filaments by quick-freeze deep-etch replica electron microscopy. This method was capable of resolving the inter-domain cleft of the monomeric actin molecule. HMM heads that are not bound to actin, when observed by this technique, were straight and elongated in the absence of ATP but strongly kinked upon addition of ATP or ADP.inorganic vanadate to produce the putative long-lived analog of HMM-ADP.inorganic phosphate. The low-magnification image of the ATP-containing acto-HMM preparation showed features characteristic of sliding actin filaments on glass coverslips. At high magnification, all the HMM molecules were found attached to actin by one head with the majority projecting perpendicular to the filament axis, whereas in the absence of ATP, HMM exhibited two-head binding with a preponderance of molecules tilted at 45 degrees. Detailed examination of the shape of HMM heads involved in sliding showed a rounded, and flat appearance of the tip and comparatively thin neck portion as if the heads grasp actin filament, in contrast to rigor crossbridges which have a pear-shaped configuration with more gradual taper. Such configurations of HMM heads were essentially the same as I observed previously on acto-myosin subfragment-1 (S1) by the same technique, except for the presence of an additional neck portion of HMM which makes interpretaion of the images easier. Interestingly, under actively sliding conditions, very few heads were tilted in the rigor configuration. At first glance, the addition of ADP to the rigor-complex gave images rather like those obtained with ATP, but they turned out to be different. The contribution of the structural change of crossbridges to the force development is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources