Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr;43(4):875-86.
doi: 10.1088/0031-9155/43/4/015.

Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT

Affiliations

Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT

D S Lalush et al. Phys Med Biol. 1998 Apr.

Abstract

We introduce a fast block-iterative maximum a posteriori (MAP) reconstruction algorithm and apply it to four-dimensional reconstruction of gated SPECT perfusion studies. The new algorithm, called RBI-MAP, is based on the rescaled block iterative EM (RBI-EM) algorithm. We develop RBI-MAP based on similarities between the RBI-EM, ML-EM and MAP-EM algorithms. RBI-MAP requires far fewer iterations than MAP-EM, and so should result in acceleration similar to that obtained from using RBI-EM or OS-EM as opposed to ML-EM. When complex four-dimensional clique structures are used in the prior, however, evaluation of the smoothing prior dominates the processing time. We show that a simple scheme for updating the prior term in the heart region only for RBI-MAP results in savings in processing time of a factor of six over MAP-EM. The RBI-MAP algorithm incorporating 3D collimator-detector response compensation is demonstrated on a simulated 99mTc gated perfusion study. Results of RBI-MAP are compared with RBI-EM followed by a 4D linear filter. For the simulated study, we find that RBI-MAP provides consistently higher defect contrast for a given degree of noise smoothing than does filtered RBI-EM. This is an indication that RBI-MAP smoothing does less to degrade resolution gained from 3D detector response compensation than does a linear filter. We conclude that RBI-MAP can provide smooth four-dimensional reconstructions with good visualization of heart structures in clinically realistic processing times.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources