Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 5;37(18):6327-35.
doi: 10.1021/bi972922t.

Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase

Affiliations

Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase

G P Miller et al. Biochemistry. .

Abstract

Analysis of the dihydrofolate reductase (DHFR) complex with folate by two-dimensional heteronuclear (1H-15N) nuclear magnetic relaxation revealed that isolated residues exhibit diverse backbone fluctuations on the nanosecond to picosecond time scale [Epstein, D. M., Benkovic, S. J., and Wright, P. E. (1995) Biochemistry 34, 11037-11048]. These dynamical features may be significant in forming the Michaelis complex. Of these residues, glycine 121 displays large-amplitude backbone motions on the nanosecond time scale. This amino acid, strictly conserved for prokaryotic DHFRs, is located at the center of the betaF-betaG loop. To investigate the catalytic importance of this residue, we report the effects of Gly121 deletion and glycine insertion into the modified betaF-betaG loop. Relative to wild type, deletion of Gly121 dramatically decreases the rate of hydride transfer 550-fold and the strength of cofactor binding 20-fold for NADPH and 7-fold for NADP+. Furthermore, DeltaG121 DHFR requires conformational changes dependent on the initial binary complex to attain the Michaelis complex poised for hydride transfer. Surprisingly, the insertion mutants displayed a significant decrease in both substrate and cofactor binding. The introduction of glycine into the modified betaF-betaG loop, however, generally eliminated conformational changes required by DeltaG121 DHFR to attain the Michaelis complex. Taken together, these results suggest that the catalytic role for the betaF-betaG loop includes formation of liganded complexes and proper orientation of substrate and cofactor. Through a transient interaction with the Met20 loop, alterations of the betaF-betaG loop can orchestrate proximal and distal effects on binding and catalysis that implicate a variety of enzyme conformations participating in the catalytic cycle.

PubMed Disclaimer

Publication types

LinkOut - more resources