Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;169(6):483-90.
doi: 10.1007/s002030050600.

Iron regulates transcription of the Escherichia coli ferric citrate transport genes directly and through the transcription initiation proteins

Affiliations

Iron regulates transcription of the Escherichia coli ferric citrate transport genes directly and through the transcription initiation proteins

A Angerer et al. Arch Microbiol. 1998 Jun.

Abstract

Ferric citrate induces transcription of the ferric citrate transport genes fecABCDE in Escherichia coli by binding to the outer-membrane receptor protein FecA without entering the cell. Replete iron concentrations inhibit transcription of the fec transport system via the iron-loaded Fur repressor. Here we show that the Fur repressor activated by Mn2+ (used instead of Fe2+) binds to the promoter of the regulatory genes fecIR and to the promoter of fecABCDE. DNase I footprint analysis revealed that Mn2+-Fur (50 nM) protected 30 nucleotides of the coding strand and 24 nucleotides of the noncoding strand of the fecIR promoter. Higher amounts of Mn2+-Fur (100 nM) covered 41 nucleotides of the coding strand of the fecIR promoter and 38 nucleotides of the coding strand of the fecA promoter. The corresponding region of the noncoding strand of the fecA promoter was hypersensitive to DNase I. The results of a deletion analysis of the fecA promoter supported the previously assigned -35 and -10 regions and nucleotide position +11 for FecI-RNA polymerase interaction. Induction of fecIR transcription by iron limitation increased fecB-lacZ transcription 3.5-fold, whereas under constitutive fecIR transcription, iron limitation increased fecB-lacZ transcription twofold. The two iron-regulated sites of fec transport gene transcription suggest a fast response to sufficient intracellular iron concentrations by repression of fecABCDE transcription and a slower adaptation as the result of fecIR transcription inhibition.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources