Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr;274(4):H1218-29.
doi: 10.1152/ajpheart.1998.274.4.H1218.

Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats

Affiliations

Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats

A L Hyman et al. Am J Physiol. 1998 Apr.

Abstract

A novel cardiac catheterization technique was devised to investigate the pulmonary arterial pressure-blood flow relationship in intact spontaneously breathing rats (ISBR) under physiological conditions with constant left atrial pressure and controlled blood flow within the normal range. Observations using this new technique in vivo were contrasted with data derived with isolated perfused rat lungs in vitro. Unlike results in in vitro isolated perfused rat lungs, the pressure-flow curves in vivo were curvilinear, with pulmonary artery pressure increasing more rapidly at low pulmonary blood flows of 4-8 ml/min and less rapidly at higher flow rates. Pressure-flow curves were reproducible and were not altered by 1-1.5 h of arrested perfusion, cyclooxygenase blockade, or perfusion with aortic or mixed venous blood. In contrast to results in in vitro isolated perfused rat lungs, NG-nitro-L-arginine methyl ester (L-NAME) increased pulmonary arterial pressure at all but the lowest flow rates with a slight effect on the curvilinear pressure-flow relationship. L-NAME reversed pulmonary vasodilator responses to acetylcholine and bradykinin and enhanced the pulmonary vasodilator response to nitroglycerin. The present data suggest that actively induced pulmonary hypertension is under greater control by endothelium-derived relaxing factor (EDRF). Unlike previous results in in vitro perfused rat lungs, results in ISBR demonstrate that the pulmonary vasodilator response to adrenomedullin-(13-52) is not mediated by calcitonin gene-related peptide receptors, which are not coupled to the release of EDRF. These results indicate that this novel technique may provide a useful model for the study of the pulmonary circulation in the intact chest rat.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources