Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr;274(4):H1239-47.
doi: 10.1152/ajpheart.1998.274.4.H1239.

Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts

Affiliations

Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts

G W Goodwin et al. Am J Physiol. 1998 Apr.

Abstract

We postulated that glycogen is a significant energy substrate compared with fatty acids and glucose in response to adrenergic stimulation of working rat hearts. Oxidation rates were determined at 1-min intervals by release of 3H2O from [9,10-(3)H]oleate (0.4 mM, 1% albumin) and 14CO2 from exogenous [U-14C]glucose (5 mM) or, by a pulse-chase method, from [14C]glycogen. We estimated the 14C enrichment of glycogen metabolized at each time point to determine true rates of glycogen use. Based on the pattern of glycogen enrichment over time, glycogenolysis did not exhibit a high degree of preference for newly synthesized glycogen. Epinephrine (1 microM) increased contractile performance 86% but did not stimulate oleate oxidation. The increased energy demand was supplied by carbohydrates, initially by a burst of glycogenolysis (contributing 35% to total ATP synthesis for 5 min) and followed by delayed increase in the use of exogenous glucose (eventually contributing 29% to ATP synthesis). On the basis of the release of 14CO2 and [14C]lactate specifically from glucose or glycogen, we found that a larger portion of glycogen was oxidized compared with exogenous glucose, augmenting the yield of ATP from glycogen. Thus the heart responds to an acute increase in energy demand by selective oxidation of glycogen.

PubMed Disclaimer

Publication types

LinkOut - more resources