Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;53(1):21-7.
doi: 10.1136/thx.53.1.21.

Expression of growth factors and remodelling of the airway wall in bronchial asthma

Affiliations

Expression of growth factors and remodelling of the airway wall in bronchial asthma

M Hoshino et al. Thorax. 1998 Jan.

Abstract

Background: Bronchial asthma is characterised by airway structural changes, including mucosal inflammatory infiltration and subepithelial collagen deposition, that may represent the morphological basis for the chronicity of the disease. The relationship between airway wall thickness and growth factors in asthma has not been elucidated.

Methods: Bronchial biopsy specimens were obtained from 21 asthmatic patients and eight healthy subjects and the basement membrane thickness was measured by light microscopy and electron microscopy. At the same time the numbers of eosinophils and fibroblasts were assessed and the expression of transforming growth factor beta 1 (TGF-beta 1), platelet derived growth factor (PDGF), and insulin like growth factor (IGF) I in the bronchial mucosa was examined by immunostaining. The relationship between the degree of thickening of the subepithelial layer and both the clinical data and pulmonary function were also investigated.

Results: The basement membrane of the asthmatic patients was thicker than that of the healthy controls (median 8.09 versus 4.02 microns). Electron microscopic examination of the basement membrane revealed thickening of the subepithelial lamina reticularis; this thickening significantly correlated with the number of fibroblasts in the submucosa in the asthmatic subjects (rs = 0.88) but not in the controls (rs = 0.70). There was a significantly higher number of eosinophils in the airways of the asthmatic subjects than in the healthy subjects (EG1 + cells: 52.0 versus 2.0/mm2, EG2 + cells: 56.0 versus 1.5/mm2). The expression of each growth factor in the bronchial mucosa was similar in asthmatic and healthy subjects (TGF-beta 1: 18.0% versus 16.0%, PDGF: 37.0% versus 32.5%, IGF-I: 15.0% versus 8.0%). A weak but statistically significant correlation was found between the number of fibroblasts and the expression of TGF-beta 1 in asthmatic subjects (rs = 0.50). There was a significant correlation between the thickness of the subepithelial layer in asthmatic subjects and the attack score (rs = 0.58) and a significant inverse correlation between the subepithelial collagen thickness in asthmatic subjects and airway hypersensitivity (rs = -0.65).

Conclusions: These findings indicate that the thickening of the subepithelial layer in bronchial asthma is due to an increase in fibroblasts, and that the thickness of the subepithelial collagen appears to be linked to an increase in bronchial responsiveness and exacerbation of clinical manifestations.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Clin Allergy. 1977 Mar;7(2):137-45 - PubMed
    1. Am Rev Respir Dis. 1989 Mar;139(3):801-5 - PubMed
    1. Biochemistry. 1980 Feb 19;19(4):790-7 - PubMed
    1. Chest. 1981 Nov;80(5):600-6 - PubMed
    1. J Clin Invest. 1985 Jun;75(6):1914-8 - PubMed

Publication types

MeSH terms

Substances