Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 12;37(19):6864-73.
doi: 10.1021/bi972449j.

Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation

Affiliations

Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation

S L Hazen et al. Biochemistry. .

Abstract

We have recently demonstrated that activated phagocytes employ the heme protein myeloperoxidase, H2O2, and Cl- to oxidize the aromatic amino acid l-tyrosine to the reactive aldehyde p-hydroxyphenylacetaldehyde. We now present evidence for the generality of this reaction by demonstrating that neutrophils employ the myeloperoxidase-H2O2-Cl- system to oxidize nearly all of the common alpha-amino acids to yield a family of reactive aldehydes. Chemical characterization suggested that reactive carbonyl moieties were generated during amino acid oxidation by myeloperoxidase. The structures of amino-acid-derived aldehydes were confirmed using a variety of mass spectrometric methods. Aldehyde production required myeloperoxidase, H2O2, Cl-, and an amino acid; it was inhibited by heme poisons and catalase. Hypochlorous acid was the apparent oxidizing intermediate because its addition to alpha-amino acids resulted in the formation of the anticipated aldehyde. Stimulated human neutrophils likewise generated aldehydes from all classes of alpha-amino acids by a pathway inhibited by heme poisons and catalase, implicating myeloperoxidase and H2O2 in the cell-mediated reaction. Aldehyde production accounted for a significant fraction of the H2O2 generated by stimulated neutrophils at physiological concentrations of amino acids. Collectively, these results suggest that amino-acid-derived aldehydes represent a product of reactive oxidant species generated by activated phagocytes.

PubMed Disclaimer

Publication types

LinkOut - more resources