Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;79(5):2643-52.
doi: 10.1152/jn.1998.79.5.2643.

Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity

Affiliations
Free article

Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity

E Bracci et al. J Neurophysiol. 1998 May.
Free article

Abstract

Bath-application of increasing concentrations of extracellular K+ elicited alternating motor patterns recorded from pairs of various lumbar ventral roots of the neonatal rat (0-2 days old) spinal cord in vitro. The threshold concentration of K+ for this effect was 7.9 +/- 0.8 mM (mean +/- SD). The suprathreshold concentration range useful to evoke persistent motor patterns (lasting >/=10 min) was very narrow ( approximately 1 mM) as further increments elicited only rhythmic activity lasting from 20 s to a few minutes. On average, the fastest period of rhythmic patterns was 1.1 +/- 0.3 s. Intracellular recording from lumbar motoneurons showed that raised extracellular K+ elicited membrane potential oscillations with superimposed repetitive firing. In the presence of N-methyl--aspartate (NMDA) or non-NMDA receptor blockers [R(-)-2-amino-phosphonovaleric acid or 6-cyano-7-nitroquinoxaline-2,3-dione, respectively] extracellular K+ increases could still induce motor patterns although the threshold concentration was raised. Serotonin (5-HT) also induced alternating motor patterns (threshold 15 +/- 7 microM) that were consistently slower than those induced by high K+ or NMDA. Ritanserin (1 microM) prevented the locomotor-like activity of 5-HT but not that of high K+ provided the concentration of the latter was further increased. Subthreshold concentrations of K+ became effective in the presence of subthreshold doses of 5-HT or NMDA, indicating mutual facilitation between these substances. The fastest pattern frequency was observed by raising K+ or by adding NMDA. In the presence of 5-HT, the pattern frequency was never as fast even if NMDA (or high K+) was coapplied. Furthermore, application of 5-HT significantly slowed down the K+- or NMDA-induced rhythm, an effect strongly potentiated in the presence of ritanserin. It is suggested that the operation of the spinal locomotor network was activated by rises in extracellular K+, which presumably led to a broad increase in neuronal excitability. Whenever the efficiency of excitatory synaptic transmission was diminished (for example by glutamate receptor antagonism), a larger concentration of K+ was required to evoke locomotor-like patterns. The complex effect (comprising stimulation and inhibition) of 5-HT on alternating pattern generation appeared to result from a dual action of this substance on the spinal locomotor network.

PubMed Disclaimer

Publication types

MeSH terms

Grants and funding

LinkOut - more resources