Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;4(5):615-8.
doi: 10.1038/nm0598-615.

Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis

Affiliations

Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis

A Belaaouaj et al. Nat Med. 1998 May.

Abstract

Neutrophil elastase (NE) is a potent serine proteinase whose expression is limited to a narrow window during myeloid development. In neutrophils, NE is stored in azurophil granules along with other serine proteinases (cathepsin G, proteinase 3 and azurocidin) at concentrations exceeding 5 mM. As a result of its capacity to efficiently degrade extracellular matrix, NE has been implicated in a variety of destructive diseases. Indeed, while much interest has focused on the pathologic effects of this enzyme, little is known regarding its normal physiologic function(s). Because previous in vitro data have shown that NE exhibits antibacterial activity, we investigated the role of NE in host defense against bacteria. Generating strains of mice deficient in NE (NE-/-) by targeted mutagenesis, we show that NE-/- mice are more susceptible than their normal littermates to sepsis and death following intraperitoneal infection with Gram negative (Klebsiella pneumoniae and Escherichia coli) but not Gram positive (Staphylococcus aureus) bacteria. Our data indicate that neutrophils migrate normally to sites of infection in the absence of NE, but that NE is required for maximal intracellular killing of Gram negative bacteria by neutrophils.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances