Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May;11(5):441-8.
doi: 10.1021/tx970159y.

Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage

Affiliations

Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage

W A Pryor et al. Chem Res Toxicol. 1998 May.

Abstract

Previously, we have shown that aqueous cigarette tar (ACT) extracts contain a long-lived tar radical that associates with DNA in isolated rat alveolar macrophages and causes DNA damage in isolated rat thymocytes. These ACT solutions reduce oxygen to produce superoxide and, ultimately, hydrogen peroxide. In this study, we report the fractionation of ACT solutions prepared from the tar from five cigarettes using Sephadex columns. The fractions were analyzed by UV and electron paramagnetic resonance (EPR) spectroscopy and gas chromatography/mass spectrometry (GC/MS). The fractions containing polyphenolic species (principally catechol and hydroquinone, as determined by MS) caused most of the observed DNA damage in rat thymocytes. These DNA-damaging fractions produced superoxide, H2O2, and hydroxyl radicals. Stable free radicals were identified as o- and p-benzosemiquinone radicals by EPR spectroscopy. Hydroxyl radicals were detected by EPR spin-trapping with 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). Catalase inhibited the EPR signal of the DMPO-OH adduct, indicating that H2O2 is the precursor of the hydroxyl radical spin adduct. The Sephadex separation resulted in a 90-fold concentration of the hydrogen peroxide-generating capacity of the fractions that contained polyphenols, relative to the unfractionated ACT solution. Another fraction, which contained nicotine, caused some DNA damage, but this damage was 28-fold less than the damage caused by the most damaging phenolic fraction. These results support our hypothesis that the tar radical system is an equilibrium mixture of semiquinones, hydroquinones, and quinones. The tar radical associates with DNA, causes DNA damage, and very likely is involved in the toxicity associated with cigarette smoking.

PubMed Disclaimer

Publication types

LinkOut - more resources