Chimeric beta-EF3-alpha hemoglobin (Psi): energetics of subunit interaction and ligand binding
- PMID: 9585547
- DOI: 10.1021/bi972689z
Chimeric beta-EF3-alpha hemoglobin (Psi): energetics of subunit interaction and ligand binding
Abstract
Among the numerous strategies to design an oxygen carrier, we outline in this work the engineering of a stable homotetrameric hemoglobin, expressed in Escherichia coli. The chimeric globin (Psi) consists of the first 79 residues of human beta globin (corresponding to positions NA1 --> EF3) followed by the final 67 residues of human alpha globin (corresponding to positions EF3 --> HC3). The molecular mass for beta-EF3-alpha (Psi) globin was measured using mass spectrometry to be equal to its theoretical value: 15782 Da. Correct protein folding was assessed by UV/visible and fluorescence spectra. The subunit interaction free energies were estimated by HPLC gel filtration. In the cyanometHb species, the formation of the dimer-tetramer interface is 2 kcal/mol less favorable (Delta G = -7 kcal/mol) than that of Hb A (Delta G = -9 kcal/mol), whereas the dimer-monomer interface is tightly assembled (< -10 kcal/mol) as for the Hb A alpha 1 beta 1 interface. In contrast to Hb A, oxygen binding to Psi Hb is not cooperative. The free energy for binding four oxygen molecules to a Psi homotetramer is slightly increased compared to a Hb A heterotetramer (-28 and -27.5 kcal/4 mol of O2, respectively). The intrinsic O2 affinity of a Psi homodimer is 6-fold higher than that of a homotetramer. The linkage scheme between dimer-tetramer subunit assembly and the noncooperative oxygenation of Psi Hb predicts a stabilization of the tetramer after ligand release. This protein mechanism resembles that of Hb A for which the dimers exhibit a 100-fold higher O2 affinity relative to deoxy tetramers (which are 10(5) times more stable than oxy tetramers). A potent allosteric effector of Hb A, RSR4, binds to Psi Hb tetramers, inducing a decrease of the overall O2 affinity. Since RSR4 interacts specifically with two binding sites of deoxy Hb A, we propose that the chimeric tetramer folding is close to this native structure.
Similar articles
-
Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.Biochemistry. 2003 Sep 2;42(34):10252-9. doi: 10.1021/bi030095s. Biochemistry. 2003. PMID: 12939154
-
Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains.J Mol Biol. 2000 Jul 28;300(5):1389-406. doi: 10.1006/jmbi.2000.3898. J Mol Biol. 2000. PMID: 10903876
-
Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers.Protein Sci. 1993 Aug;2(8):1320-30. doi: 10.1002/pro.5560020815. Protein Sci. 1993. PMID: 8401217 Free PMC article.
-
Mutagenic dissection of hemoglobin cooperativity: effects of amino acid alteration on subunit assembly of oxy and deoxy tetramers.Proteins. 1992 Nov;14(3):333-50. doi: 10.1002/prot.340140303. Proteins. 1992. PMID: 1438173 Review.
-
How does hemoglobin generate such diverse functionality of physiological relevance?Biochim Biophys Acta. 2013 Sep;1834(9):1873-84. doi: 10.1016/j.bbapap.2013.04.026. Epub 2013 May 1. Biochim Biophys Acta. 2013. PMID: 23643742 Review.
Cited by
-
Coexpression of human alpha- and circularly permuted beta-globins yields a hemoglobin with normal R state but modified T state properties.Biochemistry. 2009 Jun 16;48(23):5456-65. doi: 10.1021/bi900216p. Biochemistry. 2009. PMID: 19397368 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources