Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1998 Mar 15;55(6):803-10.
doi: 10.1016/s0006-2952(97)00547-9.

Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone

Affiliations
Clinical Trial

Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone

T P Reilly et al. Biochem Pharmacol. .

Abstract

The differential incidence of adverse drug reactions (ADR) between trimethoprim-sulfamethoxazole and dapsone might be explained, in part, by differences in the inherent toxicity of the hydroxylamine metabolites of sulfamethoxazole and dapsone. To test this hypothesis, the in vitro cytotoxicities of sulfamethoxazole hydroxylamine, dapsone hydroxylamine, and monoacetyldapsone hydroxylamine were compared using peripheral blood mononuclear cells (PBMC) from healthy volunteers. After 3 hr of exposure to hydroxylamine metabolites, PBMC were washed thoroughly to remove residual hydroxylamine, and viability was assessed 16 hr later by determination of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion. A concentration-dependent toxicity was observed with each hydroxylamine metabolite. While dapsone hydroxylamine and monoacetyldapsone hydroxylamine were not significantly different, both showed significantly greater cytotoxic potency than sulfamethoxazole hydroxylamine (P < 0.05). This differential potency was not a function of differential stability in aqueous medium and was maintained over time. The effects of red blood cells (RBC), impermeable RBC "ghosts," and RBC lysate on hydroxylamine-induced cytotoxicity were determined using a two-compartment dialysis system. Amelioration of hydroxylamine-dependent cytotoxicity occurred when RBC were included in PBMC incubations. This apparent detoxifying effect was markedly greater using RBC lysate in comparison with impermeable "ghosts" (P < 0.05). No difference in detoxification was observed between sulfamethoxazole hydroxylamine and monoacetyldapsone hydroxylamine. Differences in the inherent cytotoxicity of their hydroxylamine metabolites do not appear to explain the differential incidence of ADR between trimethoprim-sulfamethoxazole and dapsone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources