Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 May;42(5):1112-9.
doi: 10.1097/00006123-199805000-00094.

Excision repair cross-complementing rodent repair deficiency gene 2 expression and chloroethylnitrosourea resistance in human glioma cell lines

Affiliations
Comparative Study

Excision repair cross-complementing rodent repair deficiency gene 2 expression and chloroethylnitrosourea resistance in human glioma cell lines

Z P Chen et al. Neurosurgery. 1998 May.

Abstract

Objective: Nitrosoureas are the standard chemotherapeutic agents for malignant brain tumors. However, their anticancer effects are limited because many tumors are resistant to these agents. Nucleotide excision repair can repair bulky deoxyribonucleic acid adducts, including deoxyribonucleic acid damage induced by ultraviolet light and some chemotherapeutic agents, and may be implicated in nitrosoureas resistance. In this study, we compared excision repair cross-complementing rodent repair deficiency Gene 2 (ERCC2), an important component of the nucleotide excision repair system, with 1 ,3-bis-(2-chloroethyl)-1-nitrosourea or (2-chloroethyl)-3-sarcosinamide-1-nitrosourea resistance in human glioma cell lines.

Methods: ERCC2 expression was evaluated by using established quantitative reverse-transcription polymerase chain reaction. 1,3-Bis-(2-chloroethyl)-1-nitrosourea and (2-chloroethyl)-3-sarcosinamide-1-nitrosourea cytotoxicity were determined by a modification of the sulforhodamine B colorimetric anticancer drug screening assay.

Results: A significant correlation between ERCC2 expression and 1 ,3-bis-(2-chloroethyl)-1-nitrosourea or (2-chloroethyl)-3-sarcosinamide-1-nitrosourea cytotoxicity was determined (r=0.737, P=0.0226 and r=0.789, P=0.0113, respectively).

Conclusion: Our results suggest that nucleotide excision repair, specifically ERCC2, may play an important role in nitrosoureas drug resistance in human gliomas.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms