Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr 1;41(1):151-9.
doi: 10.1016/s0360-3016(98)00038-8.

Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation

Affiliations

Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation

H A Al-Hallaq et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: The aim of this work was to test the hypothesis that decreases in the linewidth of magnetic resonance (MR) water signals in tumors caused by oxygenating treatments are due to increases in capillary and venous oxygen saturation of hemoglobin, which are tightly coupled to increases in extravascular oxygen tension (pO2). To establish this link, changes measured by MR were compared to changes in tissue pO2 measured directly by oxygen microelectrodes during carbogen (95% O2/5% CO2) inhalation.

Methods and materials: Mammary adenocarcinomas (R3230AC) in nine rats were imaged at 4.7 Tesla. T1-weighted (TR = 200 ms, flip angle = 45 degrees) spectroscopic images of the water resonance in a single slice through each tumor were acquired with spectral resolution of 3.9 Hz and bandwidth of +/-1000 Hz. In the same slices in these tumors, microelectrode measurements were made using a non-Clark style oxygen electrode with a 350-micron tip. MR and microelectrode measurements were made during alternating periods of air and carbogen inhalation.

Results: Water resonance linewidth decreased significantly during carbogen-induced hyperoxia. Paired Student's t-test analysis of microelectrode data indicated that pO2 was significantly (p < 0.05) increased as a result of carbogen inhalation. MR and microelectrode data averaged over each tumor demonstrated that decreased MR water signal linewidth is strongly correlated (r = 0.92, p < 0.05) with increased tumor pO2 levels.

Conclusion: Although tumor oxygenating agents increase response to radiation in rodent tumors, clinical studies have shown only marginal effects on the radiosensitivity of human tumors. This may be, in part, because the effects of tumor oxygenating treatments are highly heterogeneous both within each tumor and among a population of tumors. The noninvasive, high-resolution MR methods that are validated by the present work could guide the design of new and more effective tumor oxygenating agents and optimize treatments for individual patients.

PubMed Disclaimer

Publication types

LinkOut - more resources