Basic fibroblast growth factor regulates extracellular matrix and contractile protein expression independent of proliferation in vascular smooth muscle cells
- PMID: 9590508
- DOI: 10.1007/s11626-998-0011-3
Basic fibroblast growth factor regulates extracellular matrix and contractile protein expression independent of proliferation in vascular smooth muscle cells
Abstract
Basic fibroblast growth factor (bFGF) can influence proliferation and differentiation in vascular smooth muscle cells. Basic FGF promotes some features of the synthetic phenotype (proliferation) but is known to inhibit others (collagen synthesis). Whether bFGF availability influences smooth muscle cell phenotype independent of proliferation is not known. The purpose of this study was to determine if the effects of bFGF on extracellular matrix and contractile protein expression are dependent on changes in proliferation. Basic FGF availability was manipulated by adding bFGF to cultured cells or by inhibiting bFGF expression using antisense RNA, and adjusting culture conditions such that proliferation was held constant. Compared to cells cultured in serum alone, smooth muscle alpha-actin and myosin heavy chain expression was markedly reduced by added bFGF, but was not influenced by antisense inhibition of bFGF expression. Under the same conditions, collagen synthesis was inhibited by added bFGF, and was stimulated by reduced bFGF expression. These consequences of altering bFGF availability were not associated with changes in FGF receptor expression. These findings demonstrate that alterations in bFGF availability can regulate smooth muscle cell phenotype independent of proliferation, which may be related to the regulation of smooth muscle cell phenotype in vivo.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
