Identification of a cyclin subunit required for the function of Drosophila P-TEFb
- PMID: 9593731
- DOI: 10.1074/jbc.273.22.13855
Identification of a cyclin subunit required for the function of Drosophila P-TEFb
Abstract
P-TEFb is required for the transition from abortive elongation into productive elongation and is capable of phosphorylating the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. We cloned a cDNA encoding the large subunit of Drosophila P-TEFb and found the predicted protein contained a cyclin motif. We now name the large subunit cyclin T and the previously cloned small subunit (Zhu, Y. R., Peery, T., Peng, J. M., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Genes Dev. 11, 2622-2632) cyclin-dependent kinase 9 (CDK9). Recombinant P-TEFb produced in baculovirus-transfected Sf9 cells exhibited 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-sensitive kinase activity similar to native P-TEFb. Kc cell nuclear extract depleted of P-TEFb failed to generate long DRB-sensitive transcripts, but this activity was restored upon addition of either native or recombinant P-TEFb. Like other CDKs, CDK9 is essentially inactive in the absence of its cyclin partner. P-TEFb containing a CDK9 mutation that knocked out the kinase activity did not function in transcription. Deletion of the carboxyl-terminal domain of cyclin T in P-TEFb reduced both the kinase and transcription activity to about 10%. The CDK-activating kinase in TFIIH was unable to activate the CTD kinase activity of P-TEFb.
Similar articles
-
Identification of multiple cyclin subunits of human P-TEFb.Genes Dev. 1998 Mar 1;12(5):755-62. doi: 10.1101/gad.12.5.755. Genes Dev. 1998. PMID: 9499409 Free PMC article.
-
Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase.J Biol Chem. 1996 Oct 25;271(43):27176-83. doi: 10.1074/jbc.271.43.27176. J Biol Chem. 1996. PMID: 8900211
-
MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner.Mol Cell Biol. 2003 Jul;23(14):4859-69. doi: 10.1128/MCB.23.14.4859-4869.2003. Mol Cell Biol. 2003. PMID: 12832472 Free PMC article.
-
CDK9: from basal transcription to cancer and AIDS.Cancer Biol Ther. 2002 Jul-Aug;1(4):342-7. Cancer Biol Ther. 2002. PMID: 12432243 Review.
-
Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.J Cell Biochem. 1999 Dec 1;75(3):357-68. J Cell Biochem. 1999. PMID: 10536359 Review.
Cited by
-
RNA polymerase II transcription elongation control.Chem Rev. 2013 Nov 13;113(11):8583-603. doi: 10.1021/cr400105n. Epub 2013 Aug 6. Chem Rev. 2013. PMID: 23919563 Free PMC article. Review. No abstract available.
-
The glucocorticoid receptor blocks P-TEFb recruitment by NFkappaB to effect promoter-specific transcriptional repression.Genes Dev. 2005 May 1;19(9):1116-27. doi: 10.1101/gad.1297105. Genes Dev. 2005. PMID: 15879558 Free PMC article.
-
The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription.Mol Cell Biol. 2003 Mar;23(5):1688-702. doi: 10.1128/MCB.23.5.1688-1702.2003. Mol Cell Biol. 2003. PMID: 12588988 Free PMC article.
-
Therapeutic targeting of transcriptional cyclin-dependent kinases.Transcription. 2019 Apr;10(2):118-136. doi: 10.1080/21541264.2018.1539615. Epub 2018 Nov 9. Transcription. 2019. PMID: 30409083 Free PMC article. Review.
-
The Drosophila 7SK snRNP and the essential role of dHEXIM in development.Nucleic Acids Res. 2012 Jul;40(12):5283-97. doi: 10.1093/nar/gks191. Epub 2012 Feb 29. Nucleic Acids Res. 2012. PMID: 22379134 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous