Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 29;273(22):14053-8.
doi: 10.1074/jbc.273.22.14053.

Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia

Affiliations
Free article

Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia

W C Watt et al. J Biol Chem. .
Free article

Abstract

The cystic fibrosis (CF) transmembrane regulator (CFTR) is a cyclic AMP-dependent Cl- channel that is defective in CF cells. It has been hypothesized that CFTR exhibits an ATP release function that controls the airway surface ATP concentrations. In airway epithelial cells, CFTR-independent Ca2+-activated Cl- conductance is regulated by the P2Y2 receptor. Thus, ATP may function as an autocrine signaling factor promoting Cl- secretion in normal but not CF epithelia if ATP release is defective. We have tested for CFTR-dependent ATP release using four independent detection systems. First, a luciferase assay detected no differences in ATP concentrations in the medium from control versus cyclic AMP-stimulated primary normal human nasal epithelial (HNE) cells. A marked accumulation of extracellular ATP resulted from mechanical stimulation effected by a medium displacement. Second, high pressure liquid chromatography analysis of 3H-labeled species released from [3H]adenine-loaded HNE cells revealed no differences between basal and cyclic AMP-stimulated cells. Mechanical stimulation of HNE cells again resulted in enhanced accumulation of extracellular [3H]ATP and [3H]ADP. Third, when measuring ATP concentrations via nucleoside diphosphokinase-catalyzed phosphorylation of [alpha-33P]dADP, equivalent formation of [33P]dATP was observed in the media of control and cyclic AMP-stimulated HNE cells and nasal epithelial cells from wild-type and CF mice. Mechanically stimulated [33P]dATP formation was similar in both cell types. Fourth, 1321N1 cells stably expressing the human P2Y2 receptor were used as a reporter system for detection of ATP via P2Y2 receptor-promoted formation of [3H]inositol phosphates. Basal [3H]inositol phosphate accumulation was of the same magnitude in control and CFTR-transduced cells, and no change was observed following addition of forskolin and isoproterenol. In both cell types, mechanical stimulation resulted in hexokinase-attenuable [3H]inositol phosphate formation. In summary, our data suggest that ATP release may be triggered by mechanical stimulation of cell surfaces. No evidence was found supporting a role for CFTR in the release of ATP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources