Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 Apr 27;791(1-2):43-55.
doi: 10.1016/s0006-8993(98)00048-1.

Differential roles of two types of voltage-gated Ca2+ channels in the dendrites of rat cerebellar Purkinje neurons

Affiliations
Comparative Study

Differential roles of two types of voltage-gated Ca2+ channels in the dendrites of rat cerebellar Purkinje neurons

S Watanabe et al. Brain Res. .

Abstract

The distribution and function of voltage-gated Ca2+ channels in Purkinje neurons in rat cerebellar slices were studied using simultaneous Ca2+ imaging and whole-cell patch clamp recording techniques. Voltage-gated Ca2+ channels were activated by applying depolarizing voltage steps through the pipette attached at the soma in a voltage-clamp mode in the presence of tetrodotoxin. Poor space clamp due to extensive arborization of the dendrites allowed the dendrites to fire Ca2+ spikes. Ca2+ imaging with Fura-2 injected through the pipette, showed a steady [Ca2+]i increase at the soma and transient, spike-linked [Ca2+]i jumps in the dendrites. omega-Agatoxin-IVA (200 nM) abolished the depolarization-induced Ca2+ spikes, the spike-linked [Ca2+]i increase in the dendrites, and the steady [Ca2+]i increase at the soma. omega-Conotoxin-GVIA (5 microM) and nifedipine (3 microM) had no significant effect on the depolarization-induced responses. In the presence of 4-aminopyridine(2 mM) and omega-Agatoxin-IVA, transient [Ca2+]i increases remained in the dendrites. Low concentrations of Ni2+(100 microM) reversibly suppressed this [Ca2+]i increase. The voltage for half-maximal activation and inactivation of this component were lower than -50 mV and -31 mV, respectively. In normal conditions, low concentration of Ni2+ slowed the onset of the Ca2+ spike without changing the time course of the spikes or the amplitude of the accompanying [Ca2+]i increase. These results show that omega-Agatoxin-IVA-sensitive Ca2+ channels are distributed both in the soma and the dendrites, and are responsible for dendritic Ca2+ spikes, whereas low-voltage activated, Ni2+-sensitive Ca2+ channels are distributed in the whole dendrites including both thick and fine branches, and provide boosting current for spike generation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources