Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Apr 20;790(1-2):74-81.
doi: 10.1016/s0006-8993(98)00050-x.

Glutamate-like immunoreactivity in ascending spinofugal afferents to the rat periaqueductal grey

Affiliations

Glutamate-like immunoreactivity in ascending spinofugal afferents to the rat periaqueductal grey

J J Azkue et al. Brain Res. .

Abstract

The midbrain periaqueductal gray is a key structure for the mediation of an integrated defence behaviour. Although a prominent role for glutamate in PAG mechanisms is supported by both behavioural and morphological studies, whether PAG afferents conveying somatosensory information constitute a source of glutamatergic input to the PAG remains unknown. Here, we have compared the projection pattern of orthogradely-labelled spinoannular fibres with the distribution of glutamate-like immunoreactivity in the PAG at the light microscopic level. Transaxonal labelling was observed throughout the whole rostrocaudal axis of the PAG except for the dorsolateral regions. Cell-processes and terminal-reminiscent puncta were strongly immunoreactive in all PAG regions, including the dorsolateral areas. To ascertain whether glutamate-immunoreactive puncta observed at light microscopy indeed constituted axon terminals of the spinoannular system, glutamate-like immunoreactivity was assessed in orthogradely-labelled synaptic terminals using a post-embedding immunogold procedure for electron microscopy. Quantitative analysis of gold particle densities revealed over twice as strong an immunoreactivity in anatomically-identified spinoannular axon terminals as in dendrites postsynaptic to them, perikarya and inhibitory Gray II synapses, as well as an over 5-fold heavier immunolabelling than in glial profiles. These findings reveal that glutamate is accumulated in synaptic terminals of the spinoannular system, supporting a neurotransmitter role for this acidic amino acid in spinofugal afferents to the PAG.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources