Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul;436(2):211-9.
doi: 10.1007/s004240050624.

Fuel metabolism during ultra-endurance exercise

Affiliations

Fuel metabolism during ultra-endurance exercise

H G Rauch et al. Pflugers Arch. 1998 Jul.

Abstract

Cyclists either ingested 300 ml 100 g/l U-[14C] glucose solution every 30 min during 6 h rides at 55% of VO2max (n=6) or they consumed unlabelled glucose and were infused with U-[14C] lactate (n=5). Maintenance of euglycaemia limited rises in circulating free fatty acids, noradrenaline and adrenaline concentrations to 0.9+/-0. 1 mM, 27+/-4 nM and 2.0+/-0.5 nM, respectively, and sustained the oxidation of glucose and lactate. As muscle glycogen oxidation declined from 100+/-13 to 71+/-9 micromol/min/kg in the last 3 h of exercise, glucose and lactate oxidation and interconversion rates remained at approximately 60 and 50 and at about 4 and 5 micromol/min/kg, respectively. Continued high rates of carbohydrate oxidation led to a total oxidation of around 270 g glucose, 130 g plasma lactate and 530 g muscle glycogen. Oxidation of some 530 g of muscle glycogen far exceeded the predicted (about 250 g) initial glycogen content of the active muscles and suggested that there must have been a considerable diffusion of unlabelled lactate from glycogen breakdown in inactive muscle fibres to adjacent active muscle fibres via the interstitial fluid that did not equilibrate with 14C lactate in the circulation.

PubMed Disclaimer

Publication types

MeSH terms