Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 May;57(5):404-14.
doi: 10.1097/00005072-199805000-00004.

Glut1 glucose transporter in the primate choroid plexus endothelium

Affiliations
Comparative Study

Glut1 glucose transporter in the primate choroid plexus endothelium

E M Cornford et al. J Neuropathol Exp Neurol. 1998 May.

Abstract

The objective of the present study was to define the cellular location of the Glut1 glucose transporter in the primate choroid plexus. Immunogold electron microscopy indicated that Glut1 epitopes were associated primarily with choroid plexus endothelial cells. Digitized analyses of electron microscopic images provided quantitative estimates of the relative number of Glut1 glucose transporter epitopes on luminal and abluminal endothelial cell membranes within the choroid plexuses. We recorded a high density of Glut1 in the microvascular endothelium of primate choroid plexus, which was consistent in vervet monkeys (5-10 Glut1 gold particles per micrometer of endothelial cell plasma membrane), as well as in baboons (5-20 Glut1 gold particles per micrometer of capillary plasma membrane). In the baboon choroid plexus, we observed that perivascular cells (presumed to be pericytes) were also Glut1-positive, but with substantially reduced activity compared with endothelial cells. Occasional Glut1-immunogold particles were also seen in the basolateral membranes of the choroid plexus cuboidal cells. Light microscopic immunocytochemistry confirmed the abundance of Glut1 immunoreactivity in choroid plexus endothelial cells of vervet monkeys and baboons. A similar pattern was observed in surgically resected human choroid plexus, suggesting differences between primates, including humans and laboratory animals. The only difference was that erythrocytes within the human choroid plexus exhibited a florid Glut1-positive response, but were weakly immunoreactive in nonhuman primates. The observation of high glucose transporter densities in choroid plexus endothelial cells is consistent with the suggestion that choroidal epithelia and capillaries provide a metabolic work capability for maintaining ionic gradients and secretory functions across the blood-CSF barriers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources