Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998:38:501-37.
doi: 10.1146/annurev.pharmtox.38.1.501.

Glutathione-dependent bioactivation of haloalkenes

Affiliations
Review

Glutathione-dependent bioactivation of haloalkenes

M W Anders et al. Annu Rev Pharmacol Toxicol. 1998.

Abstract

Several halogenated alkenes are nephrotoxic in rodents. A mechanism for the organ-specific toxicity of these compounds to the kidney has been elucidated. The mechanism involves hepatic glutathione conjugation to dihaloalkenyl or 1,1-difluoroalkyl glutathione S-conjugates, which are cleaved by gamma-glutamyltransferase and dipeptidases to cysteine S-conjugates. Haloalkene-derived cysteine S-conjugates may have four fates in the organism: (a) They may be substrates for renal cysteine conjugate beta-lyases, which cleave them to form reactive intermediates identified as thioketenes (chloroalkene-derived S-conjugates), thionoacyl halides (fluoroalkene-derived S-conjugates not containing bromide), thiiranes, and thiolactones (fluoroalkene-derived S-conjugates containing bromine); (b) cysteine S-conjugates may be N-acetylated to excretable mercapturic acids; (c) they may undergo transamination or oxidation to the corresponding 3-mercaptopyruvic acid S-conjugate; (d) finally, oxidation of the sulfur atom in halovinyl cysteine S-conjugates and corresponding mercapturic acids forms Michael acceptors and may also represent a bioactivation reaction. The formation of reactive intermediates by cysteine conjugate beta-lyase may play a role in the target-organ toxicity and in the possible renal tumorigenicity of several chlorinated olefins widely used in many chemical processes.

PubMed Disclaimer

LinkOut - more resources