Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1998 May 21;41(11):1980-90.
doi: 10.1021/jm980063g.

Investigation of the N-substituent conformation governing potency and mu receptor subtype-selectivity in (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists

Affiliations
Comparative Study

Investigation of the N-substituent conformation governing potency and mu receptor subtype-selectivity in (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists

J B Thomas et al. J Med Chem. .

Abstract

A study of the binding site requirements associated with the N-substituent of (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) derivatives was undertaken using a set of rigid vs flexible N-substituents. The study showed that compounds 7-9 bearing the trans-cinnamyl N-substituent most closely reproduced the potency at the opioid receptor of the flexible N-propylphenyl or N-propylcyclohexyl analogues previously reported. Neither the N-substituted cis-cinnamyl nor the cis-phenylcyclopropylmethyl compounds 10 and 11, respectively, showed high affinity for the opioid receptor. However, the N-trans-phenylcyclopropylmethyl compound 12 closely approximated the affinity of compounds 7-9. Additionally, we found that free rotation of the phenyl ring is necessary for high affinity binding and mu receptor subtype selectivity as the planar N-substituted thianaphthylmethyl and benzofuranylmethyl compounds 13 and 14 had significantly lower binding affinities. Altogether, these findings suggest that the high binding affinity, selectivity, and antagonist potency of N-propylphenyl or N-propylcyclohexyl analogues of (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) are achieved via a conformation wherein the connecting chain of the N-substituents is extended away from piperidine nitrogen with the appended ring system rotated out-of-plane relative to the connecting chain atoms. This conformation is quite similar to that observed in the solid state for 5, as determined by single crystal X-ray analysis. Additionally, it was found that, unlike naltrexone, N-substituents bearing secondary carbons attached directly to the piperidine nitrogen of 4 suffer dramatic losses of potency vs analogues not substituted in this manner. Using a functional assay which measured stimulation or inhibition of [35S]GTP-gamma-S binding, we show that the trans-cinnamyl analogues of (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) retain opioid pure antagonist activity and possess picomolar antagonist potency at the mu receptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources