Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 8;278(3):667-86.
doi: 10.1006/jmbi.1998.1723.

Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity

Affiliations

Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity

S M Gagné et al. J Mol Biol. .

Abstract

The N-terminal domain (residues 1 to 90) of chicken skeletal troponin C (NTnC) regulates muscle contraction upon the binding of a calcium ion to each of its two calcium binding loops. In order to characterize the backbone dynamics of NTnC in the apo state (NTnC-apo), we measured and carefully analyzed 15N NMR relaxation parameters T1, T2 and NOE at 1H NMR frequencies of 500 and 600 MHz. The overall rotational correlation time of NTnC-apo at 29.6 degrees C is 4.86 (+/-0.15) ns. The experimental data indicate that the rotational diffusion of NTnC-apo is anisotropic with a diffusion anisotropy, D parallel/D perpendicular, of 1.10. Additionally, the dynamic properties of side-chains having a methyl group were derived from 2H relaxation data of CH2D groups of a partially deuterated sample. Based on the dynamic characteristics of TnC, two different levels of "fine tuning" of the calcium affinity are presented. Significantly lower backbone order parameters (S2), were observed for calcium binding site I relative to site II and the contribution of the bond vector fluctuations to the conformational entropy of sites I and II was calculated. The conformational entropy loss due to calcium binding (DeltaDeltaSp) differs by 1 kcal/mol between sites I and II. This is consistent with the different dissociation constants previously measured for sites I and II of 16 microM and 1. 7 microM, respectively. In addition to the direct role of binding loop dynamics, the side-chain methyl group dynamics play an indirect role through the energetics of the calcium-induced structural change from a closed to an open state. Our results show that the side-chains which will be exposed upon calcium binding have reduced motion in the apo state, suggesting that conformational entropic contributions can be used to offset the free energy cost of exposing hydrophobic groups. It is clear from this work that a complete determination of their dynamic characteristics is necessary in order to fully understand how TnC and other proteins are fine tuned to appropriately carry out their function.

PubMed Disclaimer

Publication types

LinkOut - more resources