Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 10;244(2):483-94.
doi: 10.1006/viro.1998.9121.

Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein

Affiliations

Roles in cell-to-cell fusion of two conserved hydrophobic regions in the murine coronavirus spike protein

Z Luo et al. Virology. .

Abstract

The spike (S) protein of coronavirus mouse hepatitis virus (MHV), mediates attachment and fusion during viral entry and cell-to-cell fusion later in infection. By analogy with other viral proteins that induce cell fusion the MHV S protein would be expected to have a hydrophobic stretch of amino acids that serves as a fusion peptide. Sequence analysis suggests that the S protein falls within the group of fusion proteins having internal rather than N-terminal fusion peptides. Based on the features of known viral fusion peptides, we identified two regions (PEP1 and PEP2) of MHV-A59 S2 as possible fusion peptides. Site-directed mutagenesis and an in viro cell-to-cell fusion assay were used to evaluate the roles of PEP1 and PEP2, as well as a third previously identified putative fusion domain (PEP3) in membrane fusion. Substitution of bulky hydrophobic residues with charged residues within PEP1 affects the fusion activity of the S protein without affecting processing and surface expression. Similar substitutions within PEP2 result in a fusion-negative phenotype; however, these mutant S proteins also exhibit defects in protein processing and surface expression which likely explain the loss of the ability to induce fusion. Thus PEP1 remains a candidate fusion peptide, while PEP2 may play a significant role in the overall structure or oligomerization of the S protein. PEP3 is an unlikely putative fusion peptide since it is not conserved among coronaviruses and nonconservative amino acid substitutions in PEP3 have minimal effects on cell-to-cell fusion.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Current Protocols in Molecular Biology. Greene and Wiley–Interscience; New York: 1989.
    1. Binns M.M., Boursnell M.E., Tomley F.M., Brown D.K. Comparison of the spike precursor sequences of coronavirus IBV strains M41 and 6/82 with that of IBV Beaudette. J. Gen. Virol. 1986;67:2825–2831. - PubMed
    1. Boireau P., Cruciere C., Laporte J. Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. J. Gen. Virol. 1990;71:487–492. - PubMed
    1. Bos E.C.W., Heunen L., Luytjes W., Spaan W.J.M. Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology. 1995;214:453–463. - PMC - PubMed
    1. Britton P. Coronavirus motif. Nature. 1991;353:394. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources