Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Feb-Mar;23(2-3):79-86.
doi: 10.1016/s0143-4160(98)90105-1.

Current evidence suggests independent regulation of nuclear calcium

Affiliations
Review

Current evidence suggests independent regulation of nuclear calcium

M N Badminton et al. Cell Calcium. 1998 Feb-Mar.

Abstract

We review and present current evidence supporting independent regulation of nuclear Ca2+ ([Ca2+]n). The nucleus and nuclear envelope contain proteins to both regulate and respond to changes in [Ca2+]n. However, this does not prove that [Ca2+]n is independently regulated from cytosolic Ca2+ ([Ca2+]c). Studies using fluorescent dyes suggested that changes in [Ca2+]n differed in magnitude from changes in [Ca2+]c. These studies have been criticised as the nuclear environment alters the fluorescent characteristics of these dyes. We have evaluated this question with aequorin targeted to the nucleus and cytoplasm and shown that the characteristics of the indicators are not altered in their respective environments. We have demonstrated that different stimuli induce changes in [Ca2+]n and [Ca2+]c that vary both temporally and in magnitude. The nucleus appeared to be shielded from increases in [Ca2+]c, either through a mechanism involving the nuclear envelope or by cytosolic buffering of localised increases in Ca2+. In addition, agonist stimulation resulted in an increase in [Ca2+]n, consistent with release from the perinuclear Ca2+ store. There was a stimulus dependence of the relation between [Ca2+]n and [Ca2+]c suggesting differential regulation of [Ca2+]n. These results have important implications for the role of Ca2+ as a specific regulator of nuclear events through Ca2+ binding proteins. In addition, they highlight the advantages of using targeted aequorin in intact cells to monitor changes in organelle [Ca2+].

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources