Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;70(6):2606-12.
doi: 10.1046/j.1471-4159.1998.70062606.x.

Functional modulation of P2X2 receptors by cyclic AMP-dependent protein kinase

Affiliations

Functional modulation of P2X2 receptors by cyclic AMP-dependent protein kinase

Y W Chow et al. J Neurochem. 1998 Jun.

Abstract

It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2X2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2X2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2X2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2X2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2X2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2X2 receptor and ATP-mediated physiological effects in the nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources