Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12
- PMID: 9603882
- PMCID: PMC107259
- DOI: 10.1128/JB.180.11.2915-2923.1998
Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12
Abstract
We have identified, cloned, and sequenced the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid (PP) in Escherichia coli K-12. This cluster maps at min 57.5 of the chromosome and is composed of five catabolic genes arranged as a putative operon (hcaA1A2CBD) and two additional genes transcribed in the opposite direction that encode a potential permease (hcaT) and a regulator (hcaR). Sequence comparisons revealed that while hcaA1A2CD genes encode the four subunits of the 3-phenylpropionate dioxygenase, the hcaB gene codes for the corresponding cis-dihydrodiol dehydrogenase. This type of catabolic module is homologous to those encoding class IIB dioxygenases and becomes the first example of such a catabolic cluster in E. coli. The inducible expression of the hca genes requires the presence of the hcaR gene product, which acts as a transcriptional activator and shows significant sequence similarity to members of the LysR family of regulators. Interestingly, the HcaA1A2CD and HcaB enzymes are able to oxidize not only PP to 3-(2,3-dihydroxyphenyl)propionate (DHPP) but also cinnamic acid (CI) to its corresponding 2, 3-dihydroxy derivative. Further catabolism of DHPP requires the mhp-encoded meta fission pathway for the mineralization of 3-hydroxyphenylpropionate (3HPP) (A. Ferrández, J. L. García, and E. Díaz, J. Bacteriol. 179:2573-2581, 1997). Expression in Salmonella typhimurium of the mhp genes alone or in combination with the hca cluster allowed the growth of the recombinant bacteria in 3-hydroxycinnamic acid (3HCI) and CI, respectively. Thus, the convergent mhp- and hca-encoded pathways are also functional in S. typhimurium, and they are responsible for the catabolism of different phenylpropanoid compounds (3HPP, 3HCI, PP, and CI) widely available in nature.
Figures



Similar articles
-
Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12.J Bacteriol. 1997 Apr;179(8):2573-81. doi: 10.1128/jb.179.8.2573-2581.1997. J Bacteriol. 1997. PMID: 9098055 Free PMC article.
-
3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli.J Biol Chem. 2009 Aug 7;284(32):21218-28. doi: 10.1074/jbc.M109.008243. Epub 2009 Jun 11. J Biol Chem. 2009. PMID: 19520845 Free PMC article.
-
Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster.J Bacteriol. 1996 Jan;178(1):111-20. doi: 10.1128/jb.178.1.111-120.1996. J Bacteriol. 1996. PMID: 8550403 Free PMC article.
-
A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon.J Bacteriol. 1997 Oct;179(19):6145-53. doi: 10.1128/jb.179.19.6145-6153.1997. J Bacteriol. 1997. PMID: 9324265 Free PMC article.
-
3-phenylpropionate catabolism and the Escherichia coli oxidative stress response.Res Microbiol. 2005 Apr;156(3):312-21. doi: 10.1016/j.resmic.2004.10.012. Epub 2005 Jan 27. Res Microbiol. 2005. PMID: 15808934
Cited by
-
Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli.BMC Biotechnol. 2006 Mar 21;6:22. doi: 10.1186/1472-6750-6-22. BMC Biotechnol. 2006. PMID: 16551366 Free PMC article.
-
Metabolomic Profile Predicts Development of Microalbuminuria in Individuals with Type 1 Diabetes.Sci Rep. 2018 Sep 14;8(1):13853. doi: 10.1038/s41598-018-32085-y. Sci Rep. 2018. PMID: 30217994 Free PMC article.
-
Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review.Molecules. 2023 Aug 18;28(16):6132. doi: 10.3390/molecules28166132. Molecules. 2023. PMID: 37630384 Free PMC article. Review.
-
Cheating the Cheater: Suppressing False-Positive Enrichment during Biosensor-Guided Biocatalyst Engineering.ACS Synth Biol. 2022 Jan 21;11(1):420-429. doi: 10.1021/acssynbio.1c00506. Epub 2021 Dec 16. ACS Synth Biol. 2022. PMID: 34914365 Free PMC article.
-
Multiple-omics analysis of three novel haloalkaliphilic species of Kocuria revealed that the phenolic acid-degrading abilities are ubiquitous in the genus.Front Microbiol. 2025 Jul 30;16:1626161. doi: 10.3389/fmicb.2025.1626161. eCollection 2025. Front Microbiol. 2025. PMID: 40809046 Free PMC article.
References
-
- Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
-
- Asturias J A, Díaz E, Timmis K N. The evolutionary relationships of biphenyl dioxygenase from Gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from Gram-negative bacteria. Gene. 1995;156:11–18. - PubMed
-
- Bachmann B J. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In: Neidhardt F C, Ingraham J L, Low K B, Magasanik B, Schaechter M, Umbarger H E, editors. Escherichia coli and Salmonella thyphimurium: cellular and molecular biology. Washington, D.C: American Society for Microbiology; 1987. pp. 1190–1219.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous