Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun 1;160(11):5563-71.

Cloning and characterization of mouse vascular adhesion protein-1 reveals a novel molecule with enzymatic activity

Affiliations
  • PMID: 9605161

Cloning and characterization of mouse vascular adhesion protein-1 reveals a novel molecule with enzymatic activity

P Bono et al. J Immunol. .

Abstract

Human vascular adhesion protein-1 (VAP-1) is a sialylated endothelial cell adhesion molecule mediating the initial L-selectin-independent interactions between lymphocytes and endothelial cells in man. In this work we cloned and characterized mouse VAP-1 (mVAP-1) and produced an anti-mVAP-1 mAb against a recombinant mVAP-1 fusion protein. The isolated cDNA encodes a novel 84.5-kDa mouse molecule. The anti-mVAP-1 mAb stained high endothelial venules in peripheral lymph nodes, and smooth muscle cells and lamina propria vessels in gut. During immunoblotting, this anti-mVAP-1 mAb recognized a 110/220-kDa Ag, suggesting that mVAP-1 is a dimer. Since mVAP-1 has significant sequence identity to members of a family of enzymes called the copper-containing amine oxidases, we showed that mVAP-1 possesses monoamine oxidase activity. Thus, mVAP-1 is the first mouse membrane-bound amine oxidase identified at the molecular level. Based on the 83% identity between the isolated cDNA and human VAP-1 cDNA, the expression pattern, the molecular mass, and the enzyme activity against monoamines, the cloned molecule represents a mouse homologue of human VAP-1. Cloning of mVAP-1 provides a valuable tool for in vivo studies of the significance of VAP-1 for lymphocyte-endothelial cell interactions and of the possible relationship between leukocyte adhesion and amine oxidase activity.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources