Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 15;259(1):104-11.
doi: 10.1006/abio.1998.2639.

A quantitative model for using acridine orange as a transmembrane pH gradient probe

Affiliations

A quantitative model for using acridine orange as a transmembrane pH gradient probe

S Clerc et al. Anal Biochem. .

Abstract

Monitoring the acidification of the internal space of membrane vesicles by proton pumps can be achieved easily with optical probes. Transmembrane pH gradients cause a blue-shift in the absorbance spectrum and the quenching of the fluorescence of the cationic dye acridine orange. It has been postulated that these changes are caused by accumulation and aggregation of the dye inside the vesicles. We tested this hypothesis using liposomes with transmembrane concentration gradients of ammonium sulfate as model system. Fluorescence intensity of acridine orange solutions incubated with liposomes was affected by magnitude of the gradient, volume trapped by vesicles, and temperature. These experimental data were compared to a theoretical model describing the accumulation of acridine orange monomers in the vesicles according to the inside-to-outside ratio of proton concentrations, and the intravesicular formation of sandwich-like piles of acridine orange cations. This theoretical model predicted quantitatively the relationship between the transmembrane pH gradients and spectral changes of acridine orange. Therefore, adequate characterization of aggregation of dye in the lumen of biological vesicles provides the theoretical basis for using acridine orange as an optical probe to quantify transmembrane pH gradients.

PubMed Disclaimer

Publication types

LinkOut - more resources