Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jun;177(6):1458-64.
doi: 10.1086/515322.

Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus

Affiliations

Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus

J B Domachowske et al. J Infect Dis. 1998 Jun.

Abstract

A dose-dependent decrease in infectivity was observed on introduction of eosinophils into suspensions of respiratory syncytial virus group B (RSV-B). This antiviral effect was reversed by ribonuclease inhibitor, suggesting a role for the eosinophil secretory ribonucleases. Recombinant eosinophil-derived neurotoxin (rhEDN), the major eosinophil ribonuclease, promoted a dose-dependent decrease in RSV-B infectivity, with a 40-fold reduction observed in response to 50 nM rhEDN. Ribonucleolytically inactivated rhEDN (rhEDNdK38) had no antiviral activity. Semiquantitative reverse transcriptase-polymerase chain reaction demonstrated loss of viral genomic RNA in response to rhEDN, suggesting that this protein promotes the direct ribonucleolytic destruction of extracellular virions. Ribonuclease A had no antiviral activity even at approximately 1000-fold higher concentrations, suggesting that rhEDN has unique features other than ribonuclease activity that are crucial to its effectiveness. These results suggest that rhEDN may have potential as a therapeutic agent for prevention or treatment of disease caused by RSV.

PubMed Disclaimer

MeSH terms

LinkOut - more resources